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Abstract
In this paper, we introduce a complex nonlinear hyperchaotic system which
is a five-dimensional system of nonlinear autonomous differential equations.
This system exhibits both chaotic and hyperchaotic behavior and its dynamics
is very rich. Based on the Lyapunov exponents, the parameter values at
which this system has chaotic, hyperchaotic attractors, periodic and quasi-
periodic solutions and solutions that approach fixed points are calculated. The
stability analysis of these fixed points is carried out. The fractional Lyapunov
dimension of both chaotic and hyperchaotic attractors is calculated. Some
figures are presented to show our results. Hyperchaos synchronization is
studied analytically as well as numerically, and excellent agreement is found.

PACS numbers: 05.45.−a, 05.45.Gg, 05.45.Pg, 05.45.Xt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1982, Fowler et al [1] introduced the complex Lorenz model as

ẋ = a(y − x), ẏ = cx − y − xz, ż = −bz + 1
2 (x̄y + xȳ), (1.1)

where x and y are complex functions, z is a real function and a, b and c are positive parameters.
Dots represent derivatives with respect to time and an overbar denotes the complex conjugate
function. Equations (1.1) describe and simulate the physics of detuned lasers [2 and references
therein]. The functions x, y and z are related to the electric field, the atomic polarization
amplitudes and the population inversion, respectively; for more details, see [2]. Recently, the
basic properties and chaos synchronization of model (1.1) have been studied [3]. It is shown
that the complex Lorenz model is chaotic and has only chaotic attractors. Chaos is found to be
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useful and has great potential applications in many important fields such as communications,
rotating fluids dynamics and biomedical engineering applications to the human brain and heart
[4–6]. Other complex nonlinear systems have been introduced and studied in recent years
[7–9]. The knowledge of the dynamics of complex systems like (1.1) is still far from that
achieved for their real counterparts [7–13].

We define chaos as sensitive dependence on initial conditions. A dynamical system
is defined as a hyperchaotic system if it has at least two positive Lyapunov exponents.
Hyperchaotic systems exhibit more complex nonlinear behavior. These systems with real
variables (or functions) have been introduced and studied in the literature [14–16].

In this work we wish to construct a new system, which is a hyperchaotic one, by adding
the cross-product nonlinear term yz to the first equation of (1.1) as follows:

ẋ = a(y − x) + yz, ẏ = cx − y − xz, ż = −bz + 1
2 (x̄y + xȳ), (1.2)

where x = v1 + iv2, y = v3 + iv4 are complex functions (variables), i = √−1, z = v5 and
vi, i = 1, . . . , 5, are real functions.

In 2005, the real counterpart of (1.2) (i.e. x, y and z are real functions) was introduced and
studied in [4], where it was shown that it does not have hyperchaotic attractors. The dynamics
of (1.2) is more rich in the sense that it exhibits both chaotic and hyperchaotic attractors,
while the complex Lorenz model (1.1), complex Chen and Lü systems all have only chaotic
attractors [3, 7]. In the literature, it has been reported that hyperchaotic attractors can be
generated by adding a state feedback control to the three-dimensional real nonlinear systems
[6, 14–16].

This paper is organized as follows. In section 2 we study the dynamical properties of our
nonlinear hyperchaotic system (1.2), showing that it possesses an isolated fixed point E0 at
(0, 0, 0, 0, 0) as well as two whole circles of equilibria. The stability analysis of E0 is carried
out. The parameter values at which this system has chaotic and hyperchaotic attractors are
calculated based on the Lyapunov exponents. The fractional Lyapunov dimension [17, 18] of
these attractors is also obtained. A distinctive feature of the chaotic and hyperchaotic attractors
is their fractional (noninteger) dimension. It is also shown that (1.2) has periodic, quasi-
periodic solutions and solutions that approach fixed points. In section 3, the synchronization
of hyperchaotic attractors is achieved using a nonlinear control method [19, 20]. Furthermore,
the Lyapunov function is derived to show that the error states (i.e. differences in the dynamics
of the two systems) converge to zero. A good agreement is found between analytical and
numerical results. Finally, section 4 sums up the main conclusions of this work.

2. Complex dynamics

In this section we study the dynamical properties of (1.2), including the property of dissipation,
existence of fixed points and their stability, observation of hyperchaotic and chaotic attractors
and complex dynamical behaviors.

The real version of (1.2) is described by

v̇1 = a(v3 − v1) + v3v5, v̇2 = a(v4 − v2) + v4v5, v̇3 = cv1 − v5v1 − v3,

v̇4 = cv2 − v5v2 − v4, v̇5 = −bv5 + (v1v3 + v2v4).
(2.1)

System (1.2) (or (2.1)) has the following fundamental dynamical properties.
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2.1. Dissipation

System (1.2) is dissipative under the condition (2a + b + 2) > 0, since

∂v̇1

∂v1
+

∂v̇2

∂v2
+ · · · +

∂v̇5

∂v5
= −(2a + b + 2). (2.2)

2.2. Fixed points and their stability

The fixed points of (1.2) can be found by solving the equations

a(v3 − v1) + v3v5 = 0, a(v4 − v2) + v4v5 = 0, cv1 − v5v1 − v3 = 0,

cv2 − v5v2 − v4 = 0, −bv5 + (v1v3 + v2v4) = 0.
(2.3)

As a consequence, (1.2) possesses the following fixed points: an isolated one E0 at
(0, 0, 0, 0, 0) and two whole circles of equilibria described by

v2
1 + v2

2 = r2
1 and v2

3 + v2
4 = r2

2 , (2.4)

where r2
1 = ab(1 − d)/d2 and r2

2 = d2r2
1 , d = (1/2)[(a + c) ±

√
(a + c)2 − 4a].

The nontrivial fixed points can be written in the form

Eθ = (
v1,±

√
(b/d)v5 − v2

1, dv1,±d

√
(b/d)v5 − v2

1, v5
)
, (2.5)

where v5 = a(1 − d)/d and v1 = r1 cos θ , v2 = r1 sin θ, v3 = r2 cos θ , v4 = r2 sin θ, for
θ ∈ [0, 2π ].

To study the stability of E0 = (0, 0, 0, 0, 0), we calculate the Jacobian matrix of system
(1.2) at E0 as

JE0 =

⎛
⎜⎜⎜⎜⎝

−a 0 a 0 0
0 −a 0 a 0
c 0 −1 0 0
0 c 0 −1 0
0 0 0 0 −b

⎞
⎟⎟⎟⎟⎠

,

and its eigenvalues satisfy the characteristic polynomial:

(µ + b)
[
µ2 + (a + c)µ + a(1 − c)

]2 = 0, (2.6)

which yields µ1 = −b < 0, µ2,3 = −(1/2)[(a + c) −
√

(a + c)2 + 4a(c − 1)] and
µ4,5 = −(1/2)[(a +c)+

√
(a + c)2 + 4a(c − 1)]. Thus, for c > 1, we have µ2,3 > 0, µ4,5 < 0

and as a result E0 is an unstable fixed point. The stability analysis of Eθ can be studied in a
similar manner as for E0.

2.3. Lyapunov exponents of (1.2)

In this subsection based on Lyapunov exponents, we calculate parameter values of (2.1)
at which chaotic, hyperchaotic attractors, periodic, quasi-periodic solutions and solutions
approaching fixed points exist.

System (2.1) in vector notation can be written as

V̇ (t) = h (V (t); η) , (2.7)

where V (t) = [v1(t), v2(t), v3(t), v4(t), v5(t)]t is the state space vector, h =
[h1, h2, h3, h4, h5]t , η is a set of parameters and [ . . . ]t denotes transpose. The equations
for small deviations δV from the trajectory V (t) are

δV̇ (t) = Lij (V (t); η)δV, i, j = 1, 2, 3, 4, 5, (2.8)
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where Li,j = ∂hi

∂vj
is the Jacobian matrix:

Li,j =

⎛
⎜⎜⎜⎜⎝

−a 0 a + v5 0 v3

0 −a 0 a + v5 v4

c − v5 0 −1 0 −v1

0 c − v5 0 −1 −v2

v3 v4 v1 v2 −b

⎞
⎟⎟⎟⎟⎠

.

The Lyapunov exponents λi of the system are thus defined by [21]:

λi = lim
t−→∞

1

t
log

‖δvi(t)‖
‖δvi(0)‖ . (2.9)

To find λi , equations (2.7) and (2.8) must be numerically solved simultaneously. For
the case a = 30, c = 90 and b = 11 with the initial conditions t0 = 0; v1(0) = 2,

v2(0) = 4, v3(0) = 1, v4(0) = 3 and v5(0) = 2 we calculate the Lyapunov exponents as
λ1 = 5.333 444, λ2 = 0.282 395, λ3 = 0, λ4 = −44.639 339, λ5 = −66.901 647.

This means that our system (2.1) for this choice of a, b and c is a hyperchaotic system
since two of the Lyapunov exponents are positive and dissipative system since the sum of
Lyapunov exponents is negative.

The solutions of system (2.1) can be classified using the sign of their associated Lyapunov
exponents λi, i = 1, 2, . . . , 5, as are shown in the following table:

λ1 λ2 λ3 λ4 λ5 Type of solutions

− − − − − Solutions approach fixed points
0 − − − − Periodic solutions (limit cycles)
0 0 − − − Quasi-periodic solutions (2-torus)
+ 0 − − − Chaotic attractors
+ + 0 − − Hyperchaotic attractors
+ + − − − Hyperchaotic attractors

The Lyapunov dimension of the attractors of (1.2) is given by [17, 18]

D = j +

∑j

i=1 λi

|λj+1| , (2.10)

such that j is the largest integer for which
∑j

i=1 λi > 0.

2.3.1. Fix c = 90, b = 11 and vary a. For this case we calculate λi, i = 1, 2, . . . , 5,
for (1.2) from (2.9) with the initial conditions, t0 = 0; v1(0) = 2, v2(0) = 4, v3(0) = 1,

v4(0) = 3 and v5(0) = 2. In figure 1(a) we plot λ1, λ2 and λ3 versus a,
while in figure 1(b) we plot λ4 and λ5 versus a. From these figures it is clear
that (1.2) has hyperchaotic attractors for a ∈ [(29.1, 30.1), (92.3, 102.1), (111.8, 123.9)],
chaotic attractors for a ∈ [(12, 12.8), (86.7, 87.1), (91.7, 92.3), (123.9, 149.6)], periodic
attractors for a ∈ [(0, 12], (110.5, 111.6), (149.6, 151)] and quasi-periodic solutions for
a ∈ [(13.5, 29.1), (23.3, 34.4)]. On the other hand, figure 1(b) shows that the values of
λ4 and λ5 are negative. They, also, have negative values of other system parameters, as we
discuss below. Figure 1(c) shows the hyperchaotic attractors of (1.2) in (v1, v2, v5) space
for a = 30, c = 90 and b = 11. We calculate the Lyapunov exponents for this case
and find λ1 = 5.333 444, λ2 = 0.282 395, λ3 = 0, λ4 = −44.639 339, λ5 = −66.901 647.
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Figure 1. Lyapunov exponents equation (2.7) of (1.2) and its solutions at b = 11, c = 90 with
t0 = 0, v1(0) = 2, v2(0) = 4, v3(0) = 1, v4(0) = 3 and v5(0) = 2. (a) λ1, λ2 and λ3 versus a.
(b) λ4 and λ5 versus a. (c) For a = 30, the hyperchaotic attractor of (1.2) in (v1, v2, v5) space.
(d) For a = 47.9, the chaotic attractor of (1.2) in (v3, v4, v5) space.

Therefore, the Lyapunov dimension of this hyperchaotic attractor using equation (2.10) is
D ∼= 3.1258. Figure 1(d) shows the chaotic attractors of (1.2) in (v3, v4, v5) space for
a = 47.9, c = 90 and b = 11, for which the Lyapunov exponents are λ1 = 1.570 294,

λ2 = 0, λ3 = −0.447 66, λ4 = −70.208 81, λ5 = −87.282 716. Its Lyapunov dimension is
approximately equal to 3.0159.

2.3.2. Fix a = 30, c = 90 and vary b. The values of λ1, λ2 and λ3 versus b are plotted
in figure 2(a) for the same initial conditions as in figure 1. From this figure we conclude
that our system (1.2) has hyperchaotic attractors for b ∈ (8.7, 11.9), chaotic attractors for
b ∈ [(0, 7.2), (20.6, 26.9)], periodic solutions for b ∈ (18.7, 20.6), (b � 26.9) and quasi-
periodic solutions for b ∈ [(7.2, 8.5), [12.9, 14.5), [14.6, 16)].
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Figure 2. Lyapunov exponents of (1.2) with the same initial conditions as in figure 1: (a) λ1, λ2
and λ3 versus b at a = 30, c = 90. (b) λ1, λ2 and λ3 versus c at a = 30, b = 11.

2.3.3. Fix a = 30, b = 11 and vary c. As we did in (2.3.2) we plot λ1, λ2 and
λ3 versus c in figure 2(b). Figure 2(b) depicts that (1.2) has hyperchaotic attractors for
c ∈ [(81.8, 86.2), (86.5, 89.3), (89.6, 91.6)] and chaotic attractors exist for c lying in the
intervals [(23.3, 70), [70.6, 74.6)]. Also for c ∈ (1, 23.3) system (1.2) has periodic solutions,
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quasi-periodic solutions for c ∈ [(74.6, 81.8), (94.7, 102), (102.3, 107.9)], (c � 108.2) and
the solutions of system (1.2) approach fixed points for c ∈ (0, 1].

As is shown in figures 1(a) and 2, and based on signs of λ1 and λ2, our system (1.2)
(or (2.1)) has different solutions for very small interval values of the parameters a, b and c.
The dynamics of (1.2) is more rich in the sense that it exhibits both chaotic and hyperchaotic
attractors and periodic and quasi-periodic attractors and solutions that approach fixed points.

3. Synchronization of hyperchaotic attractors of (1.2)

In this section, we apply the nonlinear control method [19, 20] to synchronize two identical
hyperchaotic attractors of a complex nonlinear system (1.2). First, we point out the design of
this method as follows.

3.1. Design of a controller via the nonlinear control method [19]

Consider the following system:

v̇d = Avd + Bf (vd), (3.1)

where vd ∈ Rn is the state vector, A ∈ Rnn, B ∈ Rn are matrix and vector of system
parameters, respectively, and f : Rn → Rn is a nonlinear function. Equation (3.1) is
considered as a drive system.

Inserting an additive controller U ∈ Rn, the controlled response system is then given by

v̇r = Avr + Bf (vr) + U, (3.2)

where vr denotes the state vector of the response system.
The synchronization problem is to design a controller U which synchronizes the states of

both the drive and the response systems. We subtract (3.1) from (3.2) to get (3.3):

ėv = A(vr − vd) + B[f (vr) − f (vd)] + U, (3.3)

where ev = vr − vd .
The essential purpose from the synchronization is to make ev(t) tend to zero as t → ∞;

therefore, we shall introduce a Lyapunov error function as V = 1/2
∑n

i=1 e2
vi , where V

is obviously positive definite. Assuming that the parameters are known and the states are
measurable, under a good choice of the controller U, which makes the first derivative of V as
negative (i.e. V̇ < 0), we may be able to achieve synchronization. Consequently, the states of
the response system and drive system will be globally synchronized asymptotically.

3.2. Synchronization of hyperchaotic attractors

Let us assume that we have two identical hyperchaotic attractors of system (1.2) and denote the
drive system by the subscript d, while the response system to be controlled is denoted by the
subscript r. Our aim is to design a controller U which will make the controlled response system
follow the drive system and become ultimately the same; the drive and response systems are
defined respectively as

ẋd = a(yd − xd) + ydzd, ẏd = cxd − yd − xdzd, żd = −bzd + 1
2 (x̄dyd + xd ȳd)

(3.4)

and

ẋr = a(yr − xr) + yrzr + (u1 + iu2), ẏr = cxr − yr − xrzr + (u3 + iu4),

żr = −bzr + 1
2 (x̄ryr + xr ȳr ) + u5,

(3.5)
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where a, b, c are positive (real or complex) parameters, x and y are complex variables (or
functions), z is a real variable, the overbar denotes a complex conjugate variable and dots
represent derivatives with respect to time, whereas [u1, u2, u3, u4, u5] are the control functions
to be determined.

The complex systems (3.4) and (3.5) can be rewritten respectively as

v̇1d = a(v3d − v1d) + v3dv5d , v̇2d = a(v4d − v2d) + v4dv5d ,

v̇3d = cv1d − v3d − v1dv5d , v̇4d = cv2d − v4d − v2dv5d ,

v̇5d = −bv5d + (v1dv3d + v2dv4d)

(3.6)

and

v̇1r = a(v3r − v1r )v3rv5r + u1, v̇2r = a(v4r − v2r ) + v4rv5r + u2,

v̇3r = cv1r − v3r − v1rv5r + u3, v̇4r = cv2r − v4r − v2rv5r + u4,

v̇5r = −bv5r + (v1rv3r + v2rv4r ) + u5.

(3.7)

In order to now obtain the controller U = [u1, u2, u3, u4, u5]T , we define the error states
between the response system that is to be controlled and the controlling drive system as

ev1 = (v1r − v1d), ev2 = (v2r − v2d)), ev3 = (v3r − v3d),

ev4 = (v4r − v4d)), ev5 = (v5r − v5d).
(3.8)

Subtracting (3.6) from (3.7) and using (3.8) yield the error equations:

ėv1 = −aev1 + aev3 + v3rev5 + v5dev3 + u1,

ėv2 = −aev2 + aev4 + v4rev5 + v5dev4 + u2,

ėv3 = cev1 − ev3 − v1rev5 − v5dev1 + u3,

ėv4 = cev2 − ev4 − v2rev5 − v5dev2 + u4,

ėv5 = −bev5 + v1rev3 + v3dev1 + v2rev4 + v4dev2 + u5.

(3.9)

For positive parameters a, b and c, we may define a Lyapunov function for equation (3.9) by
the following quantity:

V (t) = 1

2

5∑
i=1

e2
vi
. (3.10)

The first derivative of V (t) is given by

V̇ (t) = aev1ev3 − ae2
v1

+ v3rev5ev1 + v5dev3ev1 + u1ev1 + aev2ev4 − ae2
v2

+ v4rev5ev2

+ v5dev4ev2 + u2ev2 + cev1ev3 − e2
v3

− v1rev5ev3 − v5dev3ev1 + u3ev3 + cev2ev4

− e2
v4

− v2rev5ev4 − v5dev4ev2 + u4ev4 − be2
v5

+ v1rev5ev3 + v2rev5ev4

+ v3dev5ev1 + v4dev5ev4 + u5ev5 . (3.11)

From (3.11), we have

V̇ (t) = −a
(
e2
v1

+ e2
v2

) − (
e2
v3

+ e2
v4

) − be2
v5

+ (u1 + aev3 + v3dev5 + v3rev5)ev1

+ (u2 + aev4 + v4dev5 + v4rev5)ev2 + (u3 + cev1 + v1rev5)ev3 + (u4 + cev2

+ v2rev5)ev4 + (u5 + v1rev3 + v2rev4)ev5 . (3.12)

There are many possible choices for the controller U. If we choose the control input function
ui as

u1 = −(aev3 + v3dev5 + v3rev5), u2 = −(aev4 + v4dev5 + v4rev5),

u3 = −cev1 + v1rev5 , u4 = −cev2 + v2rev5 and

u5 = −(v1rev3 + v2rev4),

(3.13)

8
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Figure 3. Hyperchaotic synchronization of systems (3.6) and (3.7) for a = 30, c = 90 and
b = 11 with t0 = 0, v1d (0) = 2, v2d (0) = 4, v3d (0) = 1, v4d (0) = 3, v5d (0) = 2 and
v1r (0) = −2, v2r (0) = −4, v3r (0) = −1, v4r (0) = −3, v5r (0) = −2. (a) v1d (t) and v1r (t)

versus t, (b) v2d (t) and v2r (t) versus t, (c) v3d (t) and v3r (t) versus t, (d) v4d (t) and v4r (t) versus
t, (e) v5d (t) and v5r (t) versus t (t = time/10).

equation (3.12) becomes

V̇ (t) = −a
(
e2
v1

+ e2
v2

) − (
e2
v3

+ e2
v4

) − be2
v5

< 0. (3.14)

Since V (t) is a positive definite function and its derivative is negative definite, then based on
the Lyapunov stability theory, the error states evi

= 0, i = 1, . . . , 5, are asymptotically stable,
which means that

lim
t−→∞ ‖evi

(t)‖ = 0.

Therefore, the states of controlled response and drive systems are globally synchronized
asymptotically. Systems (3.6) and (3.7) with (3.13) are solved numerically for a = 30, c = 90
and b = 11 and initial conditions of the drive and response systems at t0 = 0 are
v1d(0) = 2, v2d(0) = 4, v3d(0) = 1, v4d(0) = 3, v5d(0) = 2 and v1r (0) = −2, v2r (0) = −4,

v3r (0) = −1, v4r (0) = −3, v5r (0) = −2. The synchronization of this hyperchaotic attractor
is shown in figure 3, where the oscillations of the drive and response systems rapidly become

9
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Figure 4. Synchronization errors (solutions of system (3.9)). (a) (ev1 , t) diagram, (b) (ev2 , t)

diagram, (c) (ev3 , t) diagram, (d) (ev4 , t) diagram, (e) (ev5 , t) diagram.

totally indistinguishable. The synchronization errors, evi
, plotted in figure 4, also demonstrate

that synchronization is achieved very fast, as they are seen to converge to zero after very small
values of t (time/10).

Finally, we point out that very similar results are obtained, when we apply the above
technique of nonlinear control to synchronize two identical chaotic attractors of system (1.2).
Entirely analogous figures are obtained for the oscillations as well as the behavior of the errors,
which we do not display here as they are qualitatively the same as figures 3 and 4.

4. Conclusions

As is well known, there exist interesting cases of dynamical systems where the main variables
participating in the dynamics are complex, for example, when amplitudes of electromagnetic
fields and atomic polarization are involved [2]. Increasing the number of variables (or
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introducing complex variables) is also crucial in chaos synchronization used in secure
communications, where one wishes to maximize the content and security of the transmitted
information.

In this paper, we have analyzed a new complex nonlinear hyperchaotic system, represented
by five first-order nonlinear ordinary differential equations. Dynamical properties such as
dissipative behavior, fixed points and their stability, chaotic and hyperchaotic attractors were
studied.

Based on the computation of the spectrum of the Lyapunov exponents, the fractional
Lyapunov dimension was computed for these attractors and was found in all cases to be
greater than 3, with the dimension of the hyperchaotic attractors being somewhat larger than
that of the chaotic ones. Compared with the complex Lorenz system and the complex Chen
and Lü systems, our model was seen to possess certain distinct differences such as having two
circles of equilibria and large parameter intervals of hyperchaotic and chaotic behavior. On
the other hand, when applying the same nonlinear control method, we discovered that both
chaotic and hyperchaotic attractors are synchronized very rapidly and in a very similar way.

It is hoped that the results reported here increase our knowledge of the dynamics of
complex dynamical systems, which is still far from what has been achieved to date for real
dynamical systems.
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